If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+36x+80=0
a = 2; b = 36; c = +80;
Δ = b2-4ac
Δ = 362-4·2·80
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{41}}{2*2}=\frac{-36-4\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{41}}{2*2}=\frac{-36+4\sqrt{41}}{4} $
| w-2/8=2 | | 8.84t=8.84 | | -4-x+6-x+7-8+4x=1 | | -21a+23=7(-3a+5) | | -3-6=-4x-15 | | 0.98=r/2.74 | | -1=7+c/3 | | 10w=7w+24 | | 2r−1=7 | | 9.22=h-6.24 | | -5-10c=15 | | 0.95(x)=38 | | 5(x-2)-8x=-19 | | 4.5/y+5=5/10 | | 30-9x=12x+9 | | 2n/8-5n/8=2/8 | | 10k=2k–56 | | 6(-8x-1)=2(5-3x) | | 1/3+2/3m=2/3m=2/3 | | 8x+2(x+1)=20 | | -4-a+6-a7-8+4a=1 | | x/24=0 | | -4=2t+4 | | X/24=o | | -3(n+6)+10=16 | | 24x-8+6x+38=180 | | c+5/3=4 | | 9=p/9 | | x+x+x/3=70 | | -19-c=1 | | 2(6-3x)=-12+6x | | -7(1-7p)=-154 |